Лекция 14. Трансферное обучение: сценарии, самообучение и многозадачное обучение
10.1. Введение
Большинство контролируемых методов машинного обучения, таких как классификация, основаны на некоторых исходных предположениях, таких как: (а) распределения данных во время обучения и прогнозирования схожи; (b) пространство меток во время обучения и время прогнозирования одинаковы; и (c) пространство признаков между временем обучения и прогнозирования остается неизменным. Во многих реальных сценариях эти предположения не верны из-за меняющегося характера данных.
В машинном обучении есть много методов для решения этих проблем, таких как инкрементное обучение, непрерывное обучение, обучение с учетом затрат, полууправляемое обучение и многое другое. В этой главе мы сосредоточимся в основном на трансфертном обучении и связанных с ним методах решения этих проблем.
DARPA определяет трансферное обучение как способность системы изучать и применять знания из предыдущих задач к новым задачам [Dar05]. Это исследование привело к многочисленным успехам в различных областях в течение 7–10 лет с использованием в основном традиционных алгоритмов машинного обучения с акцентом на трансферное обучение. Это исследование повлияло на различные области, такие как беспроводная связь, компьютерное зрение, поиск текста и многие другие [Fun + 06, DM06, Dai + 07b, Dai + 07a, TS07, Rai + 07, JZ07, BBS07, Pan + 08 , WSZ08].
Поскольку область глубокого обучения быстро развивается, в наши дни основное внимание уделяется неконтролируемому и трансферному обучению. Мы можем классифицировать трансферное обучение по различным подобластям, таким как самообучение, многозадачное обучение, адаптация предметной области, нулевое обучение, однократное обучение, обучение по нескольким направлениям и многое другое. В этой главе мы сначала рассмотрим определения и основные сценарии трансферного обучения. Мы расскажем о методах самообучения и многозадачного обучения. В конце мы проведем подробный пример многозадачного обучения с использованием задач НЛП, чтобы получить практический опыт по различным концепциям и методам, связанным с этой главой.
10.2. Трансферное обучение: определение, сценарии и категоризация
Как показано на рис. 10.1, в традиционном машинном обучении необходимо изучать разные модели для разных источников (данных и меток). На рисунке 10.1 показано, что для источника (задачи или домена) с обучающими данными и метками система изучает модели (модель A и модель B), которые эффективны только для целей (задачи или домена), которые похожи на источник, соответственно, узнаваемой каждой моделью. В большинстве случаев модель, изученная для конкретного источника, не может использоваться для прогнозирования другой цели. Если есть модель, которая требует большого количества обучающих данных, тогда усилия по сбору данных, маркировке данных, обучению моделей и проверке моделей должны выполняться для каждого источника. Это усилие становится громоздким с большим количеством систем с точки зрения затрат и ресурсов.
На рис. 10.2 показана общая система трансферного обучения, которая может извлекать знания из исходной системы или модели и передавать их каким-либо образом, чтобы они могли быть полезны для цели. Эта модель A, обученная для задачи с использованием обучающих данных для источника A, может использоваться для извлечения знаний и передачи их в другую целевую задачу.
[image:]
Рис. 10.1: Традиционная система машинного обучения на двух разных источниках и целевой
[image:]
Рис. 10.2: Перенос системы обучения на другой источник и цель
10.2.1. Определение
Чтобы точно определить трансферное обучение, мы сначала определим пару понятий, данных Паном и Янгом, то есть домены и задачи [PY10]. Область D = (X, P (X)) определяется в терминах (а) пространства признаков X и (б) распределения предельной вероятности P (X), где X представляет собой обучающие выборки данных X = x1, x2 ... xn ∈ X.
Например, в задаче анализа тональности с бинарной классификацией X соответствует представлению набора слов, а xi соответствует i-му термину в корпусе. Таким образом, когда, либо пространства признаков, либо маргинальное распределение вероятностей, различны для двух систем, мы говорим, что области не совпадают.
Задача T = (Y, f (·)) определяется в терминах (a) пространства меток Y и (b) целевой функции прогнозирования f (·), которая не наблюдается напрямую, а обучается из пар входных данных и меток (xi, yi). Пространство меток состоит из набора всех фактических меток, например, истинных и ложных для двоичной классификации. Целевая функция прогнозирования f (·) используется для прогнозирования метки с учетом данных и может быть интерпретирована с вероятностной точки зрения, поскольку f (·) ≈ p (y | x).
Учитывая DS исходного домена, TS исходной задачи, целевой домен DT и целевую задачу TT, трансферное обучение может быть определено как процесс обучения целевой функции прогнозирования fT (·) = P (YT | XT) в целевом домене DT с использованием знания из исходного домена DS и исходного задания TS, такие что DS = DT или TS = TT.
10.2.2. Передача сценариев обучения
Основываясь на различных компонентах домена и задачи как для источника, так и для цели, существует четыре различных сценария передачи обучения, которые перечислены ниже:
1. Пространства функций разные, XS = XT. Примером такой классификации тональности может быть то, что функции определены для двух разных языков. В НЛП этот термин часто называют межъязыковой адаптацией.
2. Распределения предельной вероятности между источником и целью различны, P (XS) = P (XT), например, текст чата с короткими формами и текст электронной почты с формальным языком, оба обсуждают настроения.
3. Промежутки между метками между источником и целью разные, YS = YT. На самом деле это означает, что исходная и целевая задачи совершенно разные, например, одна может иметь ярлыки, соответствующие настроениям (положительные, нейтральные, отрицательные), а другие - эмоциям (гнев, грусть, счастье).
4. Прогностическая функция или условные распределения вероятностей различны, P (YS | XS) = P (YT | XT). Примером этого является то, как распределение в одном может быть сбалансированным, а в другом - полностью искаженным или сильно несбалансированным; источник имеет равные случаи положительных и отрицательных настроений, но цель имеет очень мало положительных и отрицательных настроений.

10.2.3. Категории переноса обучения
Основываясь на том, «как передавать» и «что передавать» между источником и целью, трансферное обучение можно разделить на множество различных типов, многие из которых стали независимой областью для исследований и приложений. В этом разделе мы уже не будем рассматривать многие традиционные классификации на основе машинного обучения, которые приведены в обзоре Пэна и Янга [PY10]. Вместо этого мы рассмотрим только те категории, которые были изучены или оказали влияние на область глубокого обучения.
В зависимости от доступности метки и схожести задач между источником и целью могут быть различные подкатегории трансферного обучения, как показано на рис. 10.3.
Когда исходные метки недоступны, но существует большой объем исходных данных и существует от нескольких до большого количества целевых данных, тогда категория обучения называется самообучением. Многие реальные приложения для речи и текста, где стоимость или усилия по маркировке создают ограничения, а большой объем данных может быть используемый для обучения и перехода к конкретным задачам с помощью этикеток; этот метод оказался очень успешным. Использование некоторой формы обучения без учителя на источнике для захвата функций, которые могут помочь передать знания цели, является основным сделанным предположением в этих обучающих системах.
Когда цель состоит не только в том, чтобы хорошо справляться с целевыми задачами, но и каким-то образом учиться совместно и преуспевать как в исходной, так и в целевой, где задачи немного различаются, форма трансферного обучения называется многозадачным обучением. Основное предположение состоит в том, что обмен информацией между связанными задачами, которые должны иметь некоторое сходство, улучшает общее обобщение.
В связи с многозадачным обучением, когда задачи между источником и целью различаются, адаптация предметной области - это форма обучения, при которой предметная область (то есть пространство признаков или предельное распределение в данных) различается между источником и целью.
Основной принцип состоит в том, чтобы изучить представление, инвариантное к предметной области, из источника, которое может быть эффективно передано в цель с другим доменом.
При адаптации доменов домены различаются, и в источнике доступны помеченные данные от малого до большого. Адаптация домена может быть нулевой, одноразовой или малой, исходя из доступного количества помеченных данных (0,1, n).
[image:]
Рис. 10.3: Перенос категорий обучения на основе помеченных данных, задач и доменов для источника и цели
10.3. Самообучение
Самообучение, как показано на рис. 10.4, состоит из двух отдельных этапов: (а) изучение функций без учителя из немаркированного исходного набора данных и (б) настройка этих изученных функций с помощью классификатора в целевом наборе данных, который есть ярлыки.
[image:]
Рис. 10.4: Самообучение с использованием шагов предварительной подготовки и тонкой настройки. (a) Использование немаркированного исходного набора данных для изучения функций. (b) Использование помеченных целевых данных для точной настройки функций с помощью классификатора.
10.3.1. Методы
В этом разделе мы обобщим различные подходы, а затем обсудим конкретные алгоритмы или техники, которые оказались успешными в НЛП и речи.
10.3.1.1. Неконтролируемое предварительное обучение и контролируемая точная настройка
Алгоритм 1: неконтролируемое изучение функций
Данные: обучающий набор данных x1(S), x2(S), ..., xn(S) такой, что xi(S) ∈ Rd, Layers = L
Результат: матрица весов Wl ∈ Rd и bl ∈ R для каждого слоя l.
begin
appendClassifierLayer(hL)
for l = k to L do
Wl,bl = trainUnsupervised((x1(S),x2(S)..xn(S)))
return Wl,bl for each layer l

Входными данными для алгоритма 1 является исходный немаркированный набор данных размера n; (S) в нижнем индексе обозначает источник. Первая часть обучения происходит неконтролируемым образом из источника, как показано в алгоритме 1. Она имеет много общего с уменьшением функций или размерности и разнообразным обучением в традиционном машинном обучении. В этом процессе обычно используются линейные и нелинейные методы для поиска скрытого представления ввода, которое имеет меньший размер, чем ввод. В глубоком обучении последовательность в приведенном выше алгоритме соответствует многим неконтролируемым методам, таким как уровни PCA или ICA, ограниченные машины Больцмана, автоэнкодеры, разреженные автоэнкодеры, шумоподавляющие автоэнкодеры, сжимающие автоэнкодеры и методы разреженного кодирования, и это лишь некоторые из них. используется для изучения функций. Обучение может выполняться для каждого слоя или для всех слоев в зависимости от алгоритма. Функция R соответствует общему вызову базового алгоритма.
Автоэнкодеры - самая популярная техника среди подходов к обучению без учителя; базовое кодирование и декодирование происходит между слоями для соответствия входным данным. Количество нейронов или размер слоя могут играть важную роль в обучении автоэнкодера. Когда размер меньше входного, это называется неполным представлением и может рассматриваться как механизм сжатия для поиска представления в более низком измерении. Когда размер больше входного, он вызывается по полному представлению и требует методов регуляризации, таких как разреженность, для принудительного изучения важных функций. Во многих практических приложениях автоэнкодеры складываются вместе для создания иерархических или расширенных функций из входных данных.
После изучения этих функций следующим шагом будет использование целевого набора данных для их точной настройки с помощью слоя классификатора, такого как softmax. Существуют различные варианты, такие как замораживание состояния изученных слоев на некотором уровне k> 1 и использование только остальных слоев для настройки или использование всех слоев для настройки. Алгоритм 2 показывает, как в процессе точной настройки используется помеченный целевой набор данных размера m.
Алгоритм 2: SupervisedFineTuning
Данные: обучающий набор данных (x1 (T), y2), (x2 (T), y2), .. (xm (T), yn) такой, что xi (T) ∈ Rd и yi ∈ {+ 1, −1},
Обучаемые слои h1, h2, ..., hL,
Начало обучающего слоя k
Результат: матрица весов Wl ∈ Rd и bl ∈ R для каждого слоя l.
begin
appendClassifierLayer(hL+1)
for l = k to L do
Wl,bl = train((x1(T), y1),(x2(T), y2),..(xm(T), yn))
return Wl,bl for each layer l

10.3.2. Теория
В своей основополагающей работе Erhan et al. дать интересные теоретические и эмпирические данные о предварительной тренировке и настройке без учителя [Erh + 10]. Они используют различные архитектуры, такие как нейронные сети с прямой связью, сети глубокого убеждения и многослойные шумоподавляющие автокодеры на различных наборах данных, чтобы эмпирически проверить различные теоретические выводы в пошаговой контролируемой манере.
Они показывают, что предварительное обучение не только дает хорошие стартовые условия, но также фиксирует сложные зависимости между параметрами. Исследование также показывает, что предварительная тренировка без учителя может быть формой регуляризации, которая направляет веса к лучшему бассейну притяжения минимумов. Регуляризация, полученная в процессе предтренировочного процесса, влияет на отправную точку контролируемого обучения и эффект не исчезает с большим количеством данных по сравнению со стандартными методами регуляризации, такими как L1 / L2. Неудивительно, что исследование пришло к выводу, что при небольших настройках обучающих данных предварительное обучение без учителя имеет много преимуществ. Он также показывает, что в некоторых случаях порядок обучающих примеров влияет на результаты, но предварительное обучение уменьшает дисперсию даже в таких случаях. Эксперименты и результаты, которые показывают предварительную тренировку без учителя как общий метод уменьшения дисперсии и даже как метод оптимизации для лучшего обучения, поучительны.
10.3.3. Приложения в НЛП
Использование неконтролируемых техник для встраивания слов из большого массива данных и использование их для различных контролируемых задач было самым основным применением в НЛП. Поскольку это подробно обсуждалось в гл. 5 мы сосредоточимся на других задачах НЛП. Дай и Ле показывают, что неконтролируемое изучение функций с использованием автокодировщиков последовательностей или систем на основе языковых моделей с последующим использованием контролируемого обучения позволяет достичь отличных результатов в задачах классификации текста для различных наборов данных, таких как IMDB, DBpedia и 20 Newsgroup [DL15]. Автокодировщик последовательности использует кодировщик-декодер LSTM для неконтролируемого захвата зависимостей.
Веса из LSTM используются для инициализации LSTM с классификатором softmax в контролируемой настройке. Обучение автоэнкодеру без учителя показывает превосходные результаты для всех наборов данных, а универсальность метода дает ему преимущество для всех задач от последовательности к последовательности.
Рамачандран и др. показывают, что кодировщик LSTM, предварительно обученный для языкового моделирования, можно очень эффективно использовать без тонкой настройки классификации тональности [RLL17]. Деинг и др. показывают, что TopicRNN, архитектура, использующая RNN для локальных синтаксических зависимостей и тематическое моделирование для глобальных скрытых семантических представлений, может быть очень эффективным средством извлечения признаков [Die + 16]. TopicRNN достигает почти самых современных результатов по задаче классификации тональности. Туриан и др. показывают, что изучение функций без учителя из нескольких встраиваний и их применение к различным контролируемым задачам НЛП, таким как разбиение на части и NER, может дать почти самые современные результаты [TRB10].
10.3.4. Речевые приложения
Очень рано Даль и др. показали в своих исследованиях, что предварительное обучение без учителя дает отличную инициализацию весов, а использование помеченной тонкой настройки в сетях глубоких убеждений еще больше улучшает результаты в задаче автоматического распознавания речи [Dah + 12].
Hinton et al. показать неконтролируемое предварительное обучение для послойного обучения в RBM, а затем тонкая настройка с помеченными примерами не только сокращает переобучение, но и сокращает время на изучение помеченных примеров [Hin + 12]. Ли и др. показывают, что неконтролируемое обучение функций, выполняемое на большом наборе данных, может изучать фонемы, которые могут помочь в решении различных задач классификации звука с использованием глубоких сверточных сетей [Lee + 09].
10.4. Многозадачное обучение
Будь то в глубоком обучении или в общем в машинном обучении, общий процесс состоит в изучении модели для текущей задачи с учетом набора данных, соответствующего этой задаче. Это можно рассматривать как обучение с одной задачей. Расширением этого является многозадачное обучение (MTL), когда человек пытается учиться совместно из нескольких задач и соответствующих им наборов данных [Rud17]. Каруана определяет цель многозадачного обучения как «MTL улучшает обобщение, используя информацию, относящуюся к предметной области, содержащуюся в обучающих сигналах связанных задач». Многозадачное обучение также можно назвать индуктивным процессом переноса. Индуктивное смещение, введенное в MTL, происходит из-за того, что модель предпочитает гипотезу, которая объясняет несколько задач, а не одну задачу. Многозадачное обучение, как правило, эффективно, когда для каждой задачи имеется ограниченное количество помеченных данных, а знания или изученные функции частично пересекаются между задачами.
10.4.1. Методы
Два основных способа управления многозадачным обучением в глубоком обучении - это жесткое или мягкое совместное использование параметров, как показано на рис. 10.5. Жесткое совместное использование параметров - один из старейших методов в сетевых сетях с единой моделью, где скрытые слои имеют общие веса, а веса для конкретных задач изучаются на выходных уровнях [Car93]. Самым важным преимуществом жесткого совместного использования параметров является предотвращение переобучения за счет более широкого обобщения задач. С другой стороны, мягкое совместное использование параметров имеет отдельные модели с отдельными параметрами для каждой задачи, и налагается ограничение, чтобы сделать параметры для задач более похожими. Методы регуляризации часто используются при мягком совместном использовании параметров для обеспечения соблюдения ограничений.
В следующем разделе мы рассмотрим избранные сети глубокого обучения, которые оказались полезными для многозадачного обучения.
10.4.1.1. Мультилинейная сеть отношений
Одна из первых сетей глубокого обучения для многозадачного обучения была предложена Лонгом и Вангом и была известна как сеть полилинейных отношений (MRN) [LW15]. MRN продемонстрировала новейшие достижения в решении различных задач по распознаванию изображений. MRN, как показано на рис. 10.6, представляет собой модификацию архитектуры AlexNet, которая обсуждалась в гл. 6. Первые несколько слоев сверточные, а полностью связанный слой изучает передаваемые функции, в то время как остальные полностью связанные слои, расположенные ближе к выходу, изучают специфические для задачи функции. Если есть T задач с обучающими данными Xt, YtTt = 1, где Xt = xt1, ..., xtN и Yt = yt1, ..., ytN, Nt -количество обучающих примеров и метки t-й задачи с D-мерным объектом пространства и пространство меток C-мощности, сетевые параметры t-задачи в l-м слое задаются формулой Wt, l ∈ RDl 1 × Dl2, где Dl1 и Dl2 - размерности матрицы Wt, l и тензора параметров Wl = [W1, l · ··; WT, l] ∈ RDl1 × Dl2 × T. Полностью связанные уровни (f c6 - f c8) изучают отображения, заданные как ht,ln = al (Wt, lht, l − 1n + bt, l), где ht, ln - это скрытое представление для каждого экземпляра данных xtn, Wt, l - вес, bt, l - смещение, а al - функция активации, например ReLU. Классификатор t-й задачи дается как y = ft (x), а эмпирическая ошибка определяется как:
min ∑Nt n = 1J (ft (xtn), ytn) (10.1)
где J (·) - функция потерь кросс-энтропии, а ft (xtn) - условная вероятность, которую сеть присваивает для точки данных xtn метке ytn. MRN имеет тензорные нормальные априори над тензорами параметров в полносвязных слоях, специфичных для конкретной задачи, аналогично байесовским моделям, которые действовали как регуляризация при обучении, связанном с задачами.
[image:]
Рис. 10.5: Два общих метода многозадачного обучения. (a) Жесткое совместное использование параметров в скрытых слоях. (b) Мягкое совместное использование параметров на скрытых слоях для различных задач.
Максимальная апостериорная (MAP) оценка параметров сети W = Wl: l ∈ L для слоев конкретной задачи L = f c7, f c8 с учетом обучающих данных:
P (W | X, Y) ∝ P (W) · P (Y | X, W) (10.2)
P (W | X, Y) = ∏l∈LP (Wl) · ∏Tt = 1∏Ntn = 1P (ytn | xtn, Wl) (10.3)

с предположениями, что априорные P (Wl) и тензоры параметров Wl для каждого слоя не зависят от других слоев.
Часть оценки максимального правдоподобия (MLE) P (Y | X, W) моделируется для изучения передаваемых функций в нижних слоях, и все параметры для слоев (conv1 - f c6) являются общими. Слои для конкретных задач (f c7, f c8) не используются совместно, чтобы избежать отрицательной передачи. Априорная часть p (W) определяется как тензорное нормальное распределение и задается как:
p (W) = TNDl1 × Dl2 × T (O, Σl1, Σl2, Σl3) (10.4)
где Σl1, Σl2 и Σl3 - моды ковариационных матриц. В предшествующем тензоре матрица ковариации строк Σl1 ∈ RDl1 × Dl1 изучает отношения между признаками, матрица ковариации столбцов Σl2∈ RDl2 × Dl2 изучает отношения между классами, а ковариационная матрица Σl3 ∈ RT × T изучает отношения между задачи в l-м слое параметры Wl = W1, l; ···; WT, l. Эмпирическая ошибка, приведенная в формуле. 10.1 интегрирован с предшествующим данным в формуле. 10.4 в оценку MAP, приведенную в формуле. 10.3 и следуя процессу отрицательного логарифма, уравнение для оптимизации выглядит следующим образом:
min ft | Tt = 1, Σlk | Kk = 1∑Tt = 1∑Ntn = 1J (ft(xtn), ytn) +
1/2 ∑l∈L (vec (Wl)T(Σl1: K)−1vec (Wl) − ∑Kk = 1Dl/Dlkln (| Σlk |) (10.5)
где Dl = ∏Kk = 1 Dlk и K = 3 - количество мод в тензоре параметров W или K = 4 для сверточных слоев, а Σl 1: 3 = Σl1 ⊗Σl2⊗Σl3 - произведение Кронекера признака, класса и задачи ковариации. Задача оптимизации, приведенная в формуле. 10.5 вместе является невыпуклым по отношению к тензорам параметров и ковариационной матрице, и, следовательно, один набор переменных оптимизируется, а остальные остаются неизменными. Эксперименты с MRN на различных наборах данных для многозадачного обучения компьютерного зрения показывают, что он может достичь высочайшего уровня производительности.
10.4.1.2. Полностью адаптивная сеть с общим доступом к функциям
Лу и др. Используйте подход обучения, ориентированного на конкретные задачи, как поиск, начиная с тонкой сети и затем принципиально разветвляясь, чтобы сформировать широкие сети в процессе обучения [Lu + 16]. Подход также представляет новую технику, одновременное отслеживание ортогонального соответствия (SOMP), для инициализации тонкой сети из более широкой предварительно обученной сети для более быстрой сходимости и повышения точности.
Методология состоит из трех этапов:
1. Инициализация тонкой модели: поскольку сеть (тонкая) имеет другие размеры, чем предварительно обученная сеть, веса не могут быть скопированы. В результате он использует SOMP для обучения тому, как выбирать подмножество строк d из исходных строк d для каждого слоя l. Это невыпуклая задача оптимизации, поэтому для ее решения используется жадный подход, подробно описанный в статье.
2. Расширение адаптивной модели: после процесса инициализации каждый уровень, начиная с верхнего уровня, проходит процесс расширения. Процесс расширения можно определить как создание дочерних ветвей в сети, чтобы каждое ветвь выполняло подмножество задач, выполняемых сетью. Точка, в которой она разветвляется, называется соединением, и она расширяется за счет большего количества выходных слоев. На рисунке 10.7 показан итеративный процесс расширения. Если есть T задач, последний выходной слой l тонкой сети имеет соединение с T ветвями, и каждое из них может рассматриваться как подветвление. Итерационный процесс начинается с поиска t ветвей путем группировки элементов таким образом, что t ≤ T на уровне l, а затем рекурсивно перемещаются сверху вниз к следующему уровню l - 1 и так далее. Группирование задач выполняется путем связывания понятия «аффинити», которое представляет собой вероятность одновременного наблюдения простых или сложных примеров из обучающих данных для пары задач.
[image:]
Рис. 10.6: Мультилинейная сеть отношений, в которой первые несколько слоев изучают общие функции, а последние слои изучают специфические для задачи функции с помощью тензорных нормальных априорных значений.
3. Окончательное обучение модели. Последний шаг - обучение окончательной модели после инициализации тонкой модели и процесса рекурсивного расширения.

10.4.1.3. Сети для вышивки крестиком
Как показано на рис. 10.8, эти глубокие сети являются модификациями AlexNet, где общие и специфические для задачи представления изучаются с использованием линейных комбинаций [Mis + 16]. Для каждой задачи существует глубокая сеть, такая как AlexNet, и устройства для вышивки крестиком имеют соединение между объединяющими слоями в качестве входных данных либо для свертки, либо для полносвязных. Блоки для вышивки - это линейные комбинации между выходами задачи, чтобы узнать общее представление. Было показано, что они очень эффективны в условиях многозадачности с ограниченным объемом данных.
Рассмотрим две задачи A и B и многозадачное обучение с одними и теми же входными данными.
Устройство для вышивки крестиком, показанное на рис. 10.9, играет роль объединения двух сетей в многозадачную сеть, так что задачи контролируют объем совместного использования. Учитывая два выхода активаций xA, xB из слоя l, линейная комбинация обучается для получения выходов ˜xA, x˜B с использованием параметров α, которые перетекают в следующие уровни и для местоположения (i, j) задаются следующим образом:
x˜i, jAx˜i, jB = [αAA αABαBA αBB] [xi, jAxi, jB] (10.6)
[image:]
Рис. 10.7: Итерационный процесс, показывающий, как сеть расширяется на уровне на определенной итерации для группировки задач.
[image:]
Рис. 10.8: Вышитая крестиком сеть пытается изучить скрытое представление, которое полезно для двух задач.
[image:]
10.4.1.4. Совместная многозадачная сеть
Задачи НЛП обычно можно рассматривать как находящиеся в конвейере иерархии, где одна задача может быть полезной и использоваться в качестве входных данных для следующей задачи. Согаард и Гольберг показывают, что контролируемая многозадачность на разных уровнях с использованием двунаправленной архитектуры RNN, так что задачи низкого уровня, передаваемые в задачи высокого уровня, могут достигать отличных результатов [ИК16].
Хашимото и др. расширить идею, создав единую сквозную сеть глубокого обучения, в которой сеть имеет растущую глубину, позволяющую создавать лингвистические иерархии из синтаксических и семантических представлений, как показано на рис. 10.10 [Has + 16]. Было показано, что одна сквозная сеть с этой архитектурой может достигать самых современных результатов в различных задачах, таких как разбиение на части, синтаксический анализ зависимостей, семантическая связь и текстовое следствие.
В данном предложении s длины l есть wt слов. Для каждого слова есть встраивание слов и символов. Представление слов xi выполняется путем объединения встраиваемых символов как слова, так и n-граммы, которые изучаются с помощью skip-граммы с отрицательной выборкой для слов. Символьные n-граммы используются для обозначения морфологических особенностей задач. Первая задача - это тегирование POS и выполняется с использованием двунаправленного LSTM со встроенными входами и softmax для классификации тегов. Теги POS - это обучаемые вложения, которые используются на следующем уровне фрагментов. Встраивание этикеток для маркировки POS (и многих других задач) задается следующим
[image:]
Рис. 10.10: Совместная многозадачная сеть
уравнением:
ypost = ∑Cj = 1p (y1t = j | h1t) l (j) (10.7)
где C - количество тегов POS, p () - вероятность того, что j-й тег POS подписан для w-го токена, а l - встраивание метки для j-го тега POS. Вторая задача - это разбиение на части, которое использует двунаправленный LSTM и берет скрытое состояние из двунаправленного LSTM POS, скрытое состояние его LSTM, встроенный токен и встраивание надписей из тегов POS. Третья задача - это синтаксический анализ зависимостей с входными данными из скрытых состояний от уровня фрагментов, предыдущего скрытого состояния от синтаксического анализа зависимости, встроенных токенов и меток, встраиваемых в слой POS и уровень фрагментации.
Уровень тегов POS и уровень фрагментов со скрытыми состояниями полезны при создании низкоуровневых функций, которые полезны для многих задач, известных из традиционной разработки функций в NLP. Четвертая задача - это синтаксический анализ зависимостей, опять же с использованием двунаправленного LSTM с входными данными в виде скрытых состояний LSTM, встроенных токенов и встраивания меток из уровня тегов и фрагментов POS. Следующие две задачи семантически связаны по сравнению с синтаксическими задачами на предыдущих уровнях. Задача семантического родства состоит в том, чтобы сравнить два предложения и дать действительный результат для измерения их родства. Представление уровня предложения получается путем максимального объединения скрытых состояний LSTM и задается следующим образом:
hrelats = max (hrelat1, hrelat2, ..., hrelatL) (10.8)
Связь двух предложений (s, s) определяется следующим образом:
d1 (s, s’) = [| hrelats −hrelats |; hrelats o hrelat s] (10.9)
Значения d1 (s, s’) присваиваются слою softmax со скрытым слоем maxout, чтобы дать оценку связанности.
Последняя задача - это задача текстового следования, которая снова берет два предложения и дает одну из категорий следствия, противоречия или нейтральности. Обозначение отсылает к задаче на соответствие вместе с мерой расстояния, аналогичной уравнению. 10.9 в связи, полученной из передачи уровня LSTM в классификатор softmax для классификации.
Когда сеть последовательно обучается для одной задачи, а затем обучается для другой задачи, она обычно «забывает» или плохо работает с первой. Это явление называется катастрофическим вмешательством или катастрофическим забыванием. Обучение для каждого слоя аналогично с функцией потерь, которая учитывает (а) меру потери классификации для уровня с использованием прогнозов и меток, (б) L2-норму его весовых векторов и (в) член регуляризации для параметры предыдущих задач, если они являются входными. По мнению авторов, совместное обучение придает структуре устойчивость к катастрофическим помехам. Пример для уровня фрагментов, с входными данными от тегирования POS, заданными весами и смещением θPOS, и один после слоя POS с текущей эпохой, заданной θ’POS, весами уровня фрагментов WCHK и вероятностью p (yCHKt = α | hCHKt) присвоения правильной метки α весу в предложении:
J2 (θCHK) = −∑s ∑t log p (yCHKt =
α | hCHKt) + λ ||WCHK ||2 + δ ||θPOS – θ’POS||2 (10.10)
10.4.1.5. Шлюзовые сети
Ruder et al. недавно предложила общую архитектуру глубокого обучения, известную как шлюзовые сети, которая сочетает в себе концепции из многих предыдущих типов исследований, таких как жесткое совместное использование параметров, перекрестные сети, разреженная блочная регуляризация и лингвистическое иерархическое многозадачное обучение NLP [Rud17]. Шлюзовая сеть для основной задачи A и вспомогательной задачи B состоит из общего входного уровня, трех скрытых слоев для каждой задачи и двух выходных слоев для конкретных задач, как показано на рис. 10.11. Каждый скрытый уровень для задачи представляет собой RNN, разделенный на два подпространства, например, задача A и уровень 1 имеют GA,1,1 и GA,1,2, что позволяет им эффективно изучать специфические для задачи и общие представления. Выходные данные скрытых слоев передаются через параметры α на новый уровень, который выполняет линейные комбинации входных данных для взвешивания важности совместного использования и обучения для конкретных задач. Благодаря тому, что каждое подпространство имеет свои веса и контролируется, как они делятся, шлюзовые сети имеют адаптивный способ обучения в многозадачных настройках только тому, что является полезным. Последние повторяющиеся скрытые слои передают информацию параметрам β, которые пытаются объединить все, чему слои научились. Ruder et al. эмпирически показать, как основные задачи, такие как NER и SRL, могут выиграть от вспомогательных задач, таких как POS, и значительно улучшить количество ошибок.
Ruder et al. представили все обучение как задачу регуляризации матрицы, если есть M задач, которые слабо связаны с M неперекрывающимися наборами данных
[image:]
Рис. 10.11: Сети шлюзов для многозадачного обучения через слабо связанные задачи
D1, D2, ..., DM, K слоев, заданных L1, L2, ..., LK, и модели θ1, θ2, ..., θM, каждый с D параметрами и явным индуктивным смещением Ω в качестве штрафа, тогда функция потерь для минимизации определяется как:
λ1L1 (f (x; θ1), y1) + ··· + λMLM (f (x; θM), yM) + Ω (10.11)
Функции потерь Li являются кросс-энтропийными функциями потерь, а веса λi определяют важность задачи i во время обучения. Если Gm,k,1 и Gm,k,2 являются двумя подпространствами для каждого слоя, индуктивное смещение задается ограничениями ортогональности:
Ω = ∑Mm = 1∑Kk = 1 ||Gm,k,1TGm,k,2 ||2F (10.12)
Регуляризация матрицы выполняется путем обновления параметров α по аналогии с устройствами для вышивки крестиком Misra et al. [Mis + 16]. Для двух задач (A, B) и k слоев для одного подпространства расширение линейной комбинации вышивки крестиком выглядит так:
⎡ h˜A1, k ⎤ ⎡ αA1A1 ··· αA1B2 ⎤ ⎡ hA1,k ⎤
⎢… ⎥ = ⎢ … ⎥ ⎢ … ⎥ (10.13)
⎣ h˜B1,k ⎦ ⎣ αA1B2 ··· αB2B2 ⎦ ⎣ hB1,k ⎦

где hA1,k - выход первого подпространства для задачи A в слое k, а h˜A1,k - линейная комбинация этого первого подпространства и задачи A. Вход в слой k + 1 представляет собой конкатенацию двух, задано как hA,k = [h˜A1,k, h˜A2,k]. Иерархическая взаимосвязь между задачами низкого уровня и задачами высокого уровня изучается с помощью пропуска соединений между уровнями с параметрами β. Это действует как модель смеси и может быть записано как:
 	 ⎡ βA, 1 ⎤
h˜TА = ⎡ … ⎤ [hA, 1T ··· hA, kТ] (10,14)
 	 ⎣ βA, k ⎦
где hA, k - выходные данные уровня k для задачи A, а h˜A, t - линейная комбинация всех выходных данных уровня, которые поступают в классификатор softmax.
10.4.2. Теория
Каруана в своем раннем исследовании MTL, а затем Рудер в своей работе суммировали различные причины, почему и когда многозадачное обучение работает и эффективно [Car97, Rud17].
1. Неявное расширение данных - когда ограничение ограничивается данными для каждой задачи, за счет совместного обучения различных схожих задач общий размер обучающих данных увеличивается. Согласно теории обучения, чем больше обучающих данных, тем лучше качество модели.
2. Сосредоточение внимания - когда ограничением являются зашумленные данные для каждой задачи, при совместном изучении различных задач сосредоточьтесь на соответствующих функциях, которые полезны для разных задач, чтобы привлечь больше внимания. Это совместное обучение, как правило, помогает как неявный механизм выбора функций.
3. Подслушивание. Когда обучающие данные ограничены, функции, которые могут потребоваться для конкретной задачи, могут отсутствовать в данных. Имея несколько наборов данных для нескольких задач, функции могут подслушивать, то есть функции, изученные для отдельной задачи, могут использоваться для этой задачи и помогать в обобщении этой конкретной задачи.
4. Предвзятость представления - многозадачное обучение обеспечивает представление, которое обобщается для всех задач и, таким образом, способствует лучшему обобщению.
5. Регуляризация. Многозадачное обучение также рассматривается как метод регуляризации через индуктивное смещение, которое, как теоретически и эмпирически известно, улучшает качество модели.

10.4.3. Приложения в НЛП
В своей работе Рей показывает, что использование языкового моделирования в качестве вспомогательной задачи наряду с задачами маркировки последовательностей, такими как теги POS, фрагменты и обнаружение именованных сущностей для основной задачи, может значительно улучшить результаты по сравнению с тестами [Rei17]. Фанг и Кон иллюстрируют преимущества межъязычного многозадачного совместного обучения для маркировки POS на языке с ограниченными ресурсами [FC17]. Ян и др. показывают, что глубокая иерархическая нейронная сеть с межъязычным многозадачным обучением может достигать самых современных результатов в различных задачах маркировки последовательностей, таких как NER, POS-теги и фрагменты [YSC16]. Duong et al. использовать межъязыковое многозадачное обучение для достижения высокой точности на языке с ограниченными ресурсами для анализа зависимостей [Duo + 15]. Колоберт и Уэстон показывают, что многозадачное обучение с использованием CNN для решения различных задач может обеспечить большую точность [CW08].
Многозадачное обучение было наиболее успешным в задачах машинного перевода, используя их либо на этапе кодировщика, либо на этапе декодирования, либо на обоих этапах. Донг и др. успешно использовали перевод из одного источника в несколько языков с использованием MTL на этапе кодирования в сети «последовательность-последовательность» [Don + 15]. Zoph и Knight применяют обучение из нескольких источников как MTL, используя французские и немецкие источники для эффективного перевода на английский язык с использованием MTL на этапе декодирования [ZK16]. Джонсон и др. показывают, что совместное обучение кодировщиков и декодеров позволяет иметь единую модель для нескольких источников и целей унифицированным способом [Joh + 16]. Луонг и др. провести более всестороннее исследование последовательного и многозадачного обучения на различных этапах кодирования-декодирования для нескольких задач НЛП, включая перевод, чтобы продемонстрировать преимущества [Luo + 15]. Ниеуэс и Чо в своем исследовании проблем перевода немецко-английского языка такие задачи, как теги POS и NER, могут помочь в машинном переводе, а также улучшить результаты в этих задачах [NC17]. Choi et al. используйте многозадачное обучение, чтобы сначала научиться выбирать предложения в понимании, а затем используйте это для модели вопрос-ответ, чтобы получить превосходные результаты [Cho + 17].
В другой интересной работе используется большой корпус данных для изучения и ранжирования отрывков, которые, вероятно, являются вопросом-ответами, а затем используется совместное обучение этих отрывков с моделями контроля качества, чтобы дать современные результаты в открытых задачах контроля качества [Wan + 18].
Цзян показывает, как многозадачное обучение в сочетании со слабо контролируемым обучением для извлечения различных типов отношений или ролей с использованием совместной модели может улучшить результаты [Jia09]. Лю и др. показали, что совместное многозадачное обучение с использованием глубокой нейронной сети в наборах данных с низким уровнем ресурсов может улучшить результаты при классификации запросов и рейтинг веб-поиска [Liu + 15]. Катиар и Карди показывают, как совместное извлечение отношений и упоминаний с использованием рекуррентных сетей на основе внимания улучшает традиционные глубокие сети [KC17]. Янг и Митчелл подчеркивают, как одна модель, которая может изучать две задачи семантической маркировки ролей и прогнозирования отношений, изученных совместно, может улучшиться по сравнению с современным уровнем техники [YM17].
Isonuma et al. показали, как обобщение с использованием небольшого количества резюме и классификация документов, выполненные вместе, дают сопоставимые результаты с современным уровнем техники [Iso + 17]. В определенной области, например, в юридической, Luo et al. показали, как классификация с извлечением релевантных статей при совместном изучении может дать улучшенные результаты [Luo + 17]. Баликас и др. показали, как отдельные задачи анализа тональности обучения троичной и мелкозернистой классификации могут быть улучшены с помощью совместного многозадачного обучения [BMA17]. Augenstein и Søgaard демонстрируют улучшения в классификации границ ключевых фраз при изучении вспомогательных задач, таких как семантическая сверхсмысловая маркировка и идентификация многословных выражений [AS17].
10.4.4. Приложения в распознавании речи
Watanabe et al. подчеркните, как несколько задач, связанных с распознаванием речи, могут быть выполнены в гибридной среде сквозного глубокого обучения [Wat + 17]. Эта архитектура сочетает в себе две основные архитектуры, потерю CTC и основанную на внимании последовательность к последовательности, чтобы дать результаты, сравнимые с предыдущим HMM-глубоким обучением на основе таких методов. Watanabe et al. еще раз подчеркнули, как несколько задач, таких как автоматическое распознавание речи (ASR) и идентификация / классификация языков на десяти языках, могут выполняться одновременно с использованием сквозного глубокого обучения с многозадачным обучением [WHH17]. Watanabe et al. выделили, как многозадачное обучение по ASR и идентификации говорящего может значительно улучшить общую производительность по сравнению с отдельно обученными моделями [Wat + 18].
10.5. Пример использования
В этом тематическом исследовании мы исследуем, как многозадачное обучение может быть применено к некоторым общим задачам НЛП, таким как маркировка POS, фрагментирование и распознавание именованных сущностей. Общая производительность зависит от множества вариантов, таких как архитектура от последовательности к последовательности, встраивания и методы совместного использования.
Мы попытаемся ответить, могут ли низкоуровневые задачи, такие как теги POS, соответствовать высокоуровневым задачам, таким как разбиение на части? Каким будет влияние совместного обучения с тесно связанными задачами и слабо связанными задачами? Влияют ли взаимодействие и обмен на обучение? Есть ли отрицательный перенос и как это влияет на обучение? Влияют ли нейронная архитектура и варианты встраивания на многозадачное обучение? Мы будем использовать английский набор данных CoNLL-2003, в котором есть аннотации на уровне токенов для каждой задачи в наших экспериментах. В наборе данных CoNLL-2003 уже есть стандартные разбиения на обучение, проверку и тестирование. Мы будем использовать точность на тестовом наборе как наша метрика производительности для тематического исследования.
· Исследовательский анализ данных
· Многозадачные обучающие эксперименты и анализ

10.5.1. Программные инструменты и библиотеки
Мы опишем основные инструменты и библиотеки с открытым исходным кодом, которые мы использовали ниже для нашего тематического исследования:
· PyTorch: в этом тематическом исследовании мы используем http://github.com/pytorch/pytorch в качестве инструментария для глубокого обучения.
· GloVe: мы используем https://nlp.stanford.edu/projects/glove/ для наших предварительно обученных встроенных принадлежностей в экспериментах. https://github.com/SeanNaren/nlp многозадачный обучающий pytorch / для экспериментов с многозадачным обучением

10.5.2. Исследовательский анализ данных
Необработанные данные для обучения, проверки и тестирования имеют формат столбцов с аннотациями для каждого токена, как указано в таблице 10.1.
Таблица 10.1: Формат исходных данных
	Токены
	POS
	CHUNK
	NER

	ООН
	NNP
	I-NP
	I-ORG

	официальный
	NN
	I-NP
	О

	Ekeus
	NNP
	I-NP
	I-PER

	heads
	VBZ
	I-VP
	O

	for
	IN
	I-PP
	O

	Baghdad
	NNP
	I-LOC
	I-LOC

	-
	-
	O
	O

Базовый анализ общего количества статей, предложений и токенов для каждого набора данных приведен в таблице 10.2. Теги следуют схеме «внутри – снаружи – начало» (IOB) для разделения на части и NER.
Категории NER и количество токенов для каждой приведены в Таблице 10.3.
Таблица 10.2: Анализ данных CoNll-2003
	Dataset
	Articles
	Sentences
	Tokens

	Обучение
	946
	14. 987
	203, 621

	Проверка
	216
	3466
	51, 362

	Тест
	231
	3684
	46,435

Таблица 10.3: Анализ тегов NER CoNll-2003
	Набор
	LOC
	MISC
	ORG
	PER

	Обучение
	7140
	3438
	6321
	6600

	Проверка
	1837
	922
	1341
	1842

	Тест
	1668
	702
	1661
	1617

10.5.3. Эксперименты и анализ многозадачного обучения
Мы основываем нашу модель на исследованиях Согаарда и Гольберга с использованием двунаправленных RNN для сетей кодеров и декодеров в режиме «совместного обучения». Мы исследуем «совместное обучение» в двух разных конфигурациях: (а) общие уровни между всеми задачами, которые подключены к трем различным уровням softmax (POS, блок и NER) и (б) каждая RNN находится на другом уровне и скрытом слое. нижнего слоя перетекает в следующий более высокий уровень, как показано на рис. 10.12.
[image:]
Рис. 10.12: Двунаправленный LSTM, настроенный для многозадачного обучения с каскадной многоуровневой архитектурой
Мы выделяем приведенный ниже код для класса JointModel, в котором определены все конфигурации (а) индивидуального обучения, (б) соединения с общими слоями и (в) соединения с каскадом.
1 # initialization of the graph
2 def forward (self , input , ∗ hidden) :
3 i f self . train mode == ’Joint ’ :
4 # when the number of l a y e r s i s same , hidden l a y e r s
are shared
5 # and connected to different outputs
6 i f s e l f . n l a y e r s 1 == s e l f . n l a y e r s 2 == s e l f . n l a y e r s 3
:
7 logits , shared hidden = self . rnn (input , hidden
[0])
8 outputs pos = self . linear1 (logits)
9 outputs chunk = self . linear2 (logits)
10 outputs ner = self . linear3 (logits)
11 return outputs pos , outputs chunk , outputs ner
, shared hidden
12 # cascading a r c h i t e c t u r e where low−level tasks
flow into high level
13 else :
14 # POS t a g g i n g t a s k
15 logits pos , hidden pos = self . rnn1 (input ,
hidden [0])
16 self . rnn2 . flatten parameters ()
17 # chunking u s i n g POS
18 logits chunk , hidden chunk = self . rnn2 (
logits pos , hidden [1])
19 self . rnn3 . flatten parameters ()
20 # NER u s i n g chunk
21 logits ner , hidden ner = self . rnn3 (
logits chunk , hidden [2])
22 outputs pos = self . linear1 (logits pos)
23 outputs chunk = self . linear2 (logits chunk)
24 outputs ner = self . linear3 (logits ner)
25 return outputs pos , outputs chunk , outputs ner
, hidden pos , hidden chunk , hidden ner
26 else :
27 # individual task learning
28 logits , hidden = self . rnn (input , hidden [0])
29 outputs = self . linear (logits)
30 return outputs , hidden

Поскольку у нас есть разные задачи (POS, фрагменты и NER), выбор входного уровня (предварительно обученные вложения или вложения из данных), выбор нейронной архитектуры (LSTM или двунаправленный LSTM) и методы MTL (совместное использование и совместное разделение), мы проводим следующие эксперименты, чтобы получить представление о пошаговой манере:
1. LSTM + POS + Chunk: мы используем LSTM в нашем кодировщике-декодере, без предварительно обученных встраиваний и используем различные методы совместного использования, чтобы увидеть влияние на две задачи: теги POS и фрагменты.
2. LSTM + POS + NER: мы используем LSTM в нашем простом кодировщике-декодере, без предварительно обученных встраиваний и используем различные методы совместного использования, чтобы увидеть влияние на две задачи: теги POS и NER.
3. LSTM + POS + Chunk + NER: мы используем LSTM в нашем простом кодировщике-декодере, без предварительно обученных встраиваний и используем различные методы совместного использования, чтобы увидеть влияние на все три задачи: теги POS, фрагменты и NER.
4. Двунаправленный LSTM + POS + Chunk: мы используем двунаправленный LSTM в нашем кодировщике-декодере, без предварительно обученных встраиваний и используем различные методы совместного использования, чтобы увидеть влияние на две задачи POS-тегов и фрагментов. Влияние нейронной архитектуры на обучение станет очевидным из этого эксперимента.
5. LSTM + GloVe + POS + Chunk: мы используем LSTM в нашем кодировщике-декодере, предварительно обученные вложения GloVe и используем различные методы совместного использования, чтобы увидеть влияние на две задачи: теги POS и фрагменты. Влияние предварительно натренированных постельных принадлежностей на обучение станет очевидным из этого эксперимента.
6. Двунаправленный LSTM + GloVe + POS + Chunk: мы используем двунаправленный LSTM в нашем кодировщике-декодере, предварительно обученные встраивания GloVe и различные методы совместного использования, чтобы увидеть влияние на две задачи, POS-теги и фрагменты. Этот эксперимент дает нам представление о том, как сочетание архитектуры и встроенных элементов влияет на обучение для двух задач.
7. Двунаправленный LSTM + GloVe + POS + NER: мы используем двунаправленный LSTM в нашем кодировщике-декодере, предварительно обученные встраивания GloVe и различные методы совместного использования, чтобы увидеть влияние на две задачи: теги POS и NER. Этот эксперимент дает нам представление о том, как сочетание архитектуры и встраивания влияет на обучение для двух задач.
8. Двунаправленный LSTM + GloVe + POS + Chunk + NER: мы используем двунаправленный LSTM в нашем кодировщике-декодере, предварительно обученные встраивания GloVe и различные методы совместного использования, чтобы увидеть влияние на все три задачи: теги POS, фрагменты и т. д. и NER. Этот эксперимент дает нам представление о том, как сочетание архитектуры и встраивания влияет на обучение, когда есть несколько задач.
Мы проводим все эксперименты с параметрами входных встраиваний с предварительным обучением 300 измерений или без него, 128 - количеством скрытых единиц, 128 - размером пакета, 300 - количеством эпох, оптимизатором ADAM и кросс-энтропийной потерей.
В таблицах ниже мы привели результаты отдельных экспериментов и закодировали их цветом, которые показывают улучшение зеленым цветом, а где ухудшение - красным.
Таблица 10.4: Expt 1: LSTM + POS + Chunk
	Модели
	POS Acc%
	Chunk Acc %

	Отдельная задача POS
	86.33
	-

	Отдельная задача Chunk
	-
	84,69

	Совместное соединение MTL
	83,91
	85,23

	Соединение MTL раздельное
	86,88
	85,78

Таблица 10.5: Expt 2: LSTM + POS + NER
	Модели
	POS Acc%
	Chunk Acc %

	Отдельная задача POS
	86.33
	-

	Отдельная задача Chunk
	-
	84,92

	Совместное соединение MTL
	85,62
	88,28

	Соединение MTL раздельное
	86,72
	89,745

Таблица 10.6: Искл. 3: LSTM + POS + Chunk + NER
	Модели
	POS Acc%
	Chunk Acc %
	NER Acc%

	Отдельная задача POS
	87.42
	-
	-

	Отдельная задача Chunk
	-
	85,16
	

	Одиночная задача NER
	-
	-
	90, 08

	Совместное соединение MTL
	85,94
	85,00
	88, 05

	Соединение MTL раздельное
	87,11
	86,72
	88, 83

Некоторые интересные наблюдения из экспериментов:
Таблица 10.7: Expt 4: Bidirectional LSTM + POS + Chunk
	Модели
	POS Acc%
	Chunk Acc %

	Отдельная задача POS
	86.56
	-

	Отдельная задача Chunk
	-
	86,88

	Совместное соединение MTL
	84,53
	88,20

	Соединение MTL раздельное
	87,34
	89,745

Таблица 10.8: Expt 5: LSTM + GloVe + POS + Chunk
	Модели
	POS Acc%
	Chunk Acc %

	Отдельная задача POS
	90.55
	-

	Отдельная задача Chunk
	-
	88,05

	Совместное соединение MTL
	85,62
	88,12

	Соединение MTL раздельное
	86,72
	87,73

Таблица 10.9: Исключение 6: Двунаправленный LSTM + GloVe + POS + C
	Модели
	POS Acc%
	Chunk Acc %

	Отдельная задача POS
	92,42
	-

	Отдельная задача Chunk
	-
	89,69

	Совместное соединение MTL
	91,72
	89,53

	Соединение MTL раздельное
	92,34
	89,745

Таблица 10.10: Исключение 7: Двунаправленный LSTM + GloVe + POS + NER
	Модели
	POS Acc%
	Chunk Acc %

	Отдельная задача POS
	92,42
	-

	Отдельная задача Chunk
	-
	95,08

	Совместное соединение MTL
	92,89
	95,70

	Соединение MTL раздельное
	92,19
	95,0

Таблица 10.11: Искл. 8. Двунаправленный LSTM + GloVe + POS + Chunk + NER
	Модели
	POS Acc%
	Chunk Acc %
	NER Acc%

	Отдельная задача POS
	92,662
	-
	-

	Отдельная задача Chunk
	-
	88,52
	

	Одиночная задача NER
	-
	-
	95, 78

	Совместное соединение MTL
	82,89
	89,53
	94, 92

	Соединение MTL раздельное
	91,95
	90,00
	95, 31

· Таблицы 10.4 и 10.5 показывают, что совместное многозадачное обучение с отдельными уровнями LSTM по сравнению с общим уровнем между обоими улучшает производительность для обеих комбинаций, то есть теги POS и разбиение на части и теги POS и NER.
· Таблица 10.6 показывает, что когда все три задачи объединены совместно с MTL с общим, а также с отдельными уровнями, результаты ухудшаются, за исключением разбиения на фрагменты. Эти результаты контрастируют с таблицами 10.4 и 10.5 и показывают, что когда есть сочетание задач, которые не все сильно связаны, «отрицательный перенос» проявляется.
· Результаты эксперимента в таблице 10.7 используют двунаправленный LSTM и показывают производительность, аналогичную моделям LSTM в таблице 10.4, указывая на то, что простое добавление архитектурной сложности само по себе не меняет многозадачного поведения, по крайней мере, в этом случае.
· Введение предварительно обученных встраиваний с использованием векторов GloVe показывает огромный рост производительности отдельных задач, примерно на 4%, как для тегов POS, так и для фрагментов, как показано в таблице 10.8. Незначительные улучшения в MTL такие же, как и без GloVe.
· Эксперимент 6, представленный в Таблице 10.9, показывает, что когда используются как двунаправленные LSTM, так и предварительно обученные векторы GloVe, улучшаются не только отдельные задачи, но и поведение многозадачного обучения отличается от поведения базового первого эксперимента в Таблице 10.4. Здесь общий и отдельные уровни показывают худшую производительность, чем отдельные задачи. Так или иначе, чем выше производительность отдельных задач, тем меньше влияние многозадачного обучения.
· Эксперимент 7, в котором мы объединяем двунаправленный LSTM и предварительно обученный
· Результаты GloVe для POS-тегов и NER, приведенные в таблице 10.10, сильно отличаются от результатов эксперимента 2, представленных в таблице 10.5. Совместное многозадачное обучение с использованием совместного использования показывает повышение производительности для обеих задач, чего не наблюдалось в предыдущих экспериментах.
· Эксперимент 8, результаты которого приведены в таблице 10.11, где мы объединяем все задачи с двунаправленным LSTM и GloVe, показывает другую производительность по сравнению с экспериментом 3, как показано в таблице 10.6. Теги POS и фрагменты показывают улучшения с общим доступом, но NER показывает ухудшение производительности. За исключением разбиения на части, все остальные показывают худшую производительность с отдельными слоями по сравнению с экспериментом 3.

10.5.4. Упражнения для читателей и практиков
Некоторые из расширений и дополнительных идей, которые могут попробовать исследователи, приведены ниже:
1. Каково влияние использования различных предварительно обученных встраиваний, таких как word2vec?
2. Как повлияет добавление дополнительных уровней к RNN как для общего, так и для отдельного? Это меняет поведение MTL?
3. Мы пробовали MTL с LSTM, но не с GRU или даже с базовым RNN, есть ли существенная разница в производительности MTL с выбором повторяющихся сетей?
4. Какое влияние на MTL оказывают гиперпараметры, такие как количество скрытых единиц, размер пакета и эпохи?
5. Если мы добавим больше задач, таких как языковые модели, классификация настроений, маркировка семантических ролей, и это лишь некоторые из них, как это повлияет на производительность на MTL?
6. Используйте один и тот же набор данных с другими исследованиями, такими как сети с вышивкой крестиком, шлюзовые сети и другие, чтобы получить сравнительный анализ различных методов.

image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image10.emf

image11.emf

image12.emf

image1.emf

image2.emf

image3.emf

image4.emf

